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Abstract
Random sequential adsorption of k-mers (particles occupying k adsorption sites
on the substrate) of different sizes and shapes deposited on two-dimensional
regular lattices is studied. For discrete models at the late stage the surface
coverage evolves according to θ(t) = θ(∞) − A exp

[− t
σ

]
, where θ(∞) is

the jamming coverage while A and σ are fitting parameters. In the present
paper, the dependence of the terminal relaxation time σ (which determine how
fast the lattice is filled up to the jamming coverage) on the parameters of the
problem is established through a theoretical approach. In addition, a strategy
for determining σ by means of a computational algorithm is presented.

PACS numbers: 02.50.Ey, 68.43.Mn, 68.43.−h, 02.70.Uu

1. Introduction

Random sequential adsorption (RSA) is the irreversible process by which particles of different
shapes and sizes are deposited on a discrete or continuous surface. The assumptions of the RSA
models are easily stated: objects are placed randomly one after another in a d-dimensional
volume [1]. In case that the last placed object overlaps with any of those already present, it is
immediately removed; otherwise its position is permanently fixed. These models have been
applied to a significative number of systems where the deposition of objects is irreversible
over time scales of physical interest. Among others, a variety of physical [2], chemical [3],
biological [4–6] and ecological [7] processes have been modeled by using an RSA scheme.

Reversible adsorption has been explored using equilibrium statistical mechanics, and a
variety of information on the correlation among the adsorbed species is known [8]. The
irreversible RSA problem represents a nonequilibrium situation which is fundamentally
different. The earliest exact results come from Flory’s statistical analysis of saturation
coverage for random filling in one-dimensional lattices [9]. In one dimension, other seminal
contributions describing RSA develop exact results [10, 11]. However, for the general problem
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on higher dimensional lattices one only has approximate solutions and numerical approaches
emerge as an important tool in order to obtain the behavior of the model. Thus, although the
problem of RSA is an old one [9–14], it has recently been attracting renewed interest [15–24].

The kinetics of the process is characterized by the time evolution of the coverage (or the
density of the system), θ(t), i.e. the fraction of the substrate covered by the deposited objects.
This dependence has been the object of analysis during the last decades. In previous theoretical
studies of RSA, which include Monte Carlo approaches [25–29], series expansion [27, 30, 31],
rate equations [26, 28, 32], etc, both continuous and discrete models were analyzed. In such
studies it was established that the late stage deposition kinetics follows either a power law (for
continuous models) or an exponential function (for discrete models) approach to the jamming
limit. Thus, for discrete models, one writes for long times

θ(t) = θ(∞) − A exp

[
− t

σ

]
, (1)

where θ(∞) is the jamming coverage, while A and σ are fitting parameters. In continuous
models the description of the process is quite different. For the deposition of disks on
continuum, numerical results as well as theoretical analyses suggest that the coverage follows
θ(∞) − θ(t) ∼ t−p, where p = 1/d and d is the dimensionality of the host space. This result
was first conjectured by Feder (known as Feder’s law) [5] and later proved by Pomeau [33]
and Swendsen [34]. However, it is important to emphasize that for nonspherical particles,
Feder’s law is not obeyed with p = 1/d, and an effective value of p must be defined which
depends on the shape of the deposited object [28, 35].

Several papers have discussed the dependence of the parameter σ (which determine how
fast the lattice is filled up to the jamming coverage) on the main features of the system under
consideration: shape and size of the adsorbing object, symmetry of the substrate, etc. We shall
cite in the following some of the results presented in the last years. In [36], it is stated that σ

depends on the shape and size of the adsorbing object in agreement with the analytical results
of Gonzales et al [11]. The deposition of lines or needles of different lengths is discussed in
[17, 30]. It is concluded by numerical simulations that σ depends on the order of symmetry of
the shape. The rate σ does not depend on the length of the needle. RSA of objects of various
shapes on a planar triangular lattice studied by means of Monte Carlo simulations is reported
in [18]. It is claimed that σ depends mostly on the order of symmetry of the shape. Deposition
of mixtures of objects with different shapes [17] as well as the influence of impurities on the
lattice have also been considered [36].

The main purpose of the present paper is to determine the dependence of the rate σ with
the parameters of the problem and, in turn, to develop a numerical strategy to calculate it from
Monte Carlo simulations. In order to corroborate the theoretical predictions, we shall present
numerical results of RSA on different two-dimensional regular lattices.

The paper is organized as follows. In section 2 we describe a theoretical approach in order
to determine the dependence of the exponent σ on the order of symmetry of the depositing
object. The model and the numerical technique used in the Monte Carlo simulations are
described in section 3. Results are presented and discussed in section 4. Finally, the concluding
remarks are given in section 5.

2. Theoretical approach

The dependence of surface coverage on time θ(t) can distinguish three different regimes. At
short times, the deposited particles are, on average, enough far apart between them. Then,
each attempt to deposit a new particle is successful. Thus, the deposition events are largely
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uncorrelated and θ(t) ∝ t . In this regime, mean field like low density approximation schemes
are useful [5, 11, 37]. At very long times, the surface coverage reaches its saturation value
(the jamming coverage) and it remains constant. In this situation only gaps smaller than the
particle size are left in the monolayer. The resulting jammed state is less dense than the fully
ordered close-packed coverage.

Let us consider now the state of the system at large enough time (t∗) in such a way that
few k-mers left to be deposited in order to reach the jammed state. At this moment, the empty
sites can be sorted in two groups: (a) those in which a single k-mer can be deposited and
(b) those which are simple dead sites (where it is not possible to deposit any k-mer). The
evolution of the empty sites, �N , can be described by

�N = −Pad k�η, (2)

where Pad is the adsorption probability and �η is the number of deposition attempts. Defining
the Monte Carlo unit of time to be Nt (N × N) attempts for deposition, we can rewrite
equation (2) as

�N = −Pad kNt�t, (3)

where �t = �η/Nt . The adsorption probability can be given by

Pad(t) =
∑

i gi(t)∑
i g

max
i

, (4)

where gmax
i and gi(t) can be understood as follows. Once a k-mer’s end is deposited on a site i,

there exists gmax
i ways of adsorbing this object at zero density, with gmax

i being a measure of
the lattice/k-mer geometry (for instance, straight k-mers adsorbed on a square lattice would
correspond to gmax

i = 4). At a given time t, some states out of gmax
i are prevented from

occupation upon adsorption of another object. Thus, the number of configurations (among the
set of total ways, i.e. gmax

i ) which lead to adsorbed states is denoted as gi(t)
(
gi(t) � gmax

i

)
.

If the lattice is homogeneous,
∑

i g
max
i = constant = Nt 〈gmax〉=Ntg

max.
At the late stage of the filling process, we can distinguish clusters of empty sites where

k-mers can be deposited. We denote with cj such clusters and then

∑
i

gi(t) =
∑

j


∑

i∈cj

gi(t)


 , (5)

where the ‘degrees of freedom’ of the cluster, Gj(t), are defined as

Gj(t) =
∑
i∈cj

gi(t). (6)

Then, by using the above equations, we rewrite equation (4) as

Pad(t) =
∑

j Gj (t)

Nt 〈gmax〉 = Nclus(t)〈G(t)〉
Nt 〈gmax〉 , (7)

with Nclus(t) being the number of clusters of empty sites at time t where a k-mer can be
deposited. Now, equation (3) becomes

�N = −Nclus(t)〈G(t)〉
〈gmax〉 k�t. (8)

For large enough times, we assume that

N(t) − N(∞) = Nclusk. (9)
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Figure 1. (a) An example of the jammed state for deposition of dimers on a square lattice.
(b) Illustration of the second step of the proposed algorithm for calculating the effective activity of
the lattice according to what is described in the text (section 3).
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Figure 2. An attempt for deposition of a dimer on the site i in five different configurations.
Pi(t) and gi(t) are calculated for each situation and for the standard and the end-on RSA
scheme, gmax

i = 4.

Thus, by considering the above equations and dN(t) = d[N(t) − N(∞)], we have

� [N(t) − N(∞)]︸ ︷︷ ︸
z

= − [N(t) − N(∞)]︸ ︷︷ ︸
z

〈G(t)〉
〈gmax〉︸ ︷︷ ︸

F(=constant)

�t. (10)

In short, the last equation can be written as

�z = −Fz�t, (11)

or
dz

dt
= −F · z. (12)
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Figure 3. ln[θ∞ − θ(t)] as a function of t/Nt for deposition of linear k-mers on a square lattice.
The parameter θ∞ is fitted in such a way that the resulting curve for long times is linear. The slope
of the resulting curve determines the parameter σ . σ = 2.0 (F = 0.5) for the standard RSA model
while σ = 0.5 for the end-on model (F = 2.0), as indicated.

By integrating equation (12) for times larger than a given large enough value, t∗:

θ(∞) − θ(t) = [θ(∞) − θ(t∗)] e−F(t−t∗), (13)

or

θ(∞) − θ(t) = A e−F t , (14)

where A = [θ(∞) − θ(t∗)] e−F t∗ is the integration constant.
Thus, one finally obtains

θ(t) = θ(∞) − A e−F t . (15)

This equation describes the time evolution of the surface coverage in the close vicinity of the
jamming coverage. Note that (a) equations (1) and (15) have the same form, and (b) it is
possible to explicitly obtain the dependence of the exponent F as

F = 1

σ
= 〈G(t)〉

〈gmax〉 . (16)

Thus, if the depositing object and the geometry of the substrate are known, then equation (16)
predicts the value of the exponent σ .

3. Simulation details

In this section we propose an algorithm for calculating the exponent F defined by
equation (16) and henceforth called ‘effective activity’. In order to measure this quantity
as a function of time (at enough large times) we have developed the following strategy:

(1) k-mers are deposited until the jamming coverage is reached. In several cases, the obtained
results can be compared with theoretical or numerical values reported in the literature.
The deposited k-mers are identified by consecutive numbers.
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Figure 4. Effective activity for deposition of linear k-mers on a square lattice as a function of
time as indicated. One Monte Carlo time step was defined by the total number of attempts to
select a site divided by the total number of lattice sites. Results for (a) the standard scheme and
(b) the end-on model.

(2) Once the jamming state is reached, the last deposited k-mers are removed with the
following criterion: a k-mer will be removed only if a unique k-uple of the remaining
empty sites can be used for depositing a new k-mer.

Figure 1 illustrates this procedure. The last four adsorbed dimers are labeled. The
last deposited dimer (labeled with number 1) is removed. Its neighbors are all occupied,
and then only a dimer in the horizontal direction can be deposited in the vacant area. Next,
we consider the situation of the dimer labeled with the number 2. It possesses three empty
nearest neighbor (remember we are using periodic boundary conditions). If that dimer is
removed, a unique dimer can be deposited with the condition that one of its monomers can
be deposited on the recently vacant sites. Dimer 2 is removed. k-mer 3 has only one empty
nearest neighbor (after removing dimer 1) and it will be removed. Dimer 4 possesses
three empty nearest neighbor sites (after removing dimer 2) but their distribution makes
possible the deposition of two dimers where only a dimer was deposited before. The
process is stopped at this point.
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Figure 5. Idem figure 3 for bent trimers and five different shapes of tetramers, as indicated. Close
to each shape considered, the calculated value of σ is also included. (a) Standard and (b) end-on
model.

(3) Each times that a k-mer is removed (which was previously deposited at time t), the effective
activity of the lattice at time t is calculated, updated and averaged over n realization of
the experiment.

We have chosen a number of different realizations of the experiment in such a way that
the effective activity fluctuates lower than 0.5% around its average value. We have consider
n = 5 × 103 samples for each studied case. The evaluation of the effective activity by the
above procedure and the use of equation (16) allow us to determine the kinetic exponent σ .

4. Results and discussion

We start our analysis by considering the deposition of linear k-mers on a square lattice. In
order to compare our results with the previous ones in the literature, we perform a standard
simulation of RSA. For such purpose, we have used two simulation schemes.
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Figure 6. Effective activity as a function of time for each one of the k-mers discussed in figure 5,
as indicated. The effective area converges for enough large times towards the same values of those
reported in figures 5(a) and (b). (a) Standard and (b) end-on models.

First, we randomly select a site. If the chosen site is occupied by an already deposited
object, the attempt fails and time is increased by one unit. If the chosen site is empty,
then we randomly select a direction from the z possible orientations (four in the case of the
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Figure 7. Idem to (a) figure 3(a) and (b) figure 4(a); for deposition of linear k-mers on a triangular
lattice, as indicated.

square lattice) regardless of the occupation of the neighbor sites. Thus, it is possible to reject
deposition of the selected line segment even if there are empty consecutive neighbor sites for
the chosen line segment. If any neighbor site is occupied by a previously deposited object, in a
chosen direction then the attempt fails, the time is increased by one unit and we try a new site.
This scheme is usually called conventional or standard model of RSA. The second strategy to
perform an RSA is named end-on model. Here, we check the possible directions (unblocked
directions) of the chosen site and select a possible direction. We deposit the chosen line
segment in the selected direction. When there is at least an unblocked direction, the deposition
is always carried out in the end-on model. The theoretical model introduced in section 2 can
be adapted to both schemes. In order to clarify this point, it is convenient to write gi(t) as

gi(t) = Pi(t)g
max
i , (17)

where Pi(t) is the probability of occurrence of an adsorbed state (with the k-mer’s end at the
site i) in a time unit (between t and t + 1). Thus, it is clear that Pi(t) also depends on the
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Figure 8. Idem to (a) figure 3(b) and (b) figure 4(b); for deposition of linear k-mers on a triangular
lattice, as indicated.

simulation scheme used for deposition. As an example of how the theory can be applied, in
figure 2 we consider the deposition of a dimer on the site i in different configurations. Pi(t) and
gi(t) are calculated for each situation and scheme. Since the above analysis, we can conclude
that the exponent σ depends on both the lattice/k-mer geometry or degree of freedom that the
depositing object possesses and the simulation scheme used for deposition.

Based on Monte Carlo simulations it is very well known in the literature [20, 38] that (a)
σ is independent of the size of the depositing species (b) σ = 2 (F = 0.5) for the standard
model and (c) σ = 0.5 (F = 2.0) for the end-on model. The standard procedure to determine
σ consists in plotting ln[θ∞ − θ(t)] as a function of t/Nt , by fitting the parameter θ∞ in such
a way that the resulting curve for long times is linear (see figure 3). This procedure is very
sensitive and allows a very accurate determination of θ∞. The slope of the resulting curve
determines the parameter σ which has been found to be constant for all the cases studied here
regardless the k-mer sizes. σ = 2.0 for the standard RSA model means that at large times the
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deposition of k-mers occurs in only one direction (F = 0.5). For the end-on model σ = 0.5
(F = 2.0).

It is of interest to compare the standard determination of the exponent σ (figure 3) with
our predictions (based on the theoretical framework presented in section 2 and the numerical
procedure discussed in section 3). For this purpose, in figure 4 the effective activity is presented
as a function of time for (a) the standard model and (b) the end-on scheme. For enough large
times, F converges to value 0.5 (2.0) for the standard (end-on) model, regardless the size of
the k-mer.

The next case to be analyzed is the RSA of k-mers of different shapes and sizes. In
figure 5, we present the curves ln[θ∞ − θ(t)] as a function of t/Nt for bent trimers and five
different shapes of tetramers for (a) the standard and (b) the end-on models. Close to each
shape considered, the calculated value of σ is included. The same problem can be treated in
terms of our model. Figure 6 shows the effective activity for each one of the k-mers discussed
in figure 5 as a function of time and for the two mechanisms of deposition considered: (a)
standard and (b) end-on model. For enough large times, the effective area converges to the
same values of those reported in figure 5.

Finally, we consider the deposition of linear k-mers on a triangular lattice where gmax
i = 6.

Figures 7(a) and (b) (8(a) and (b)) show the curve of ln[θ∞ − θ(t)] as a function of t/Nt and
the temporal evolution of the effective activity, respectively, for the standard (end-on) scheme.
Figures confirm the predicted value of σ = 3 and σ = 0.5 for the standard and the end-on
scheme, respectively. These values agree with previous reports in the literature [18].

5. Conclusions

In the present paper we have determined the dependence of the terminal relaxation time σ on
both the lattice/k-mer geometry or degree of freedom that the depositing object possesses and
the simulation scheme used for deposition. The theoretical derivation of such dependence
allows us to develop a numerical strategy for calculating σ directly from Monte Carlo
simulations.

In order to corroborate the theoretical predictions, we have presented numerical results of
RSA on different regular lattices in two-dimensional systems. In such tests, the exponent σ

can be additionally obtained from the slope of the curve ln[θ∞ − θ(t)] as a function of t/Nt .
This ‘traditional’ derivation of σ allows us to compare our results obtained via the calculation
of the effective activity. This concept is derived from the theoretical approach presented in
section 2. The agreement between these two strategies is excellent and allows us to predict
the expected value of the exponent σ in all cases considered here.

These findings encourage us for using the proposed scheme to evaluate σ in cases where
(a) the calculus of the active area is more simple than the traditional way and/or (b) the
interpretation of the results is facilitated. Examples of such problems are the deposition of (i)
mixtures of k-mers (especially enantiomeric species), (ii) k-mers on heterogenous substrates
(including those which are devoid of translational symmetry: fractals) and (iii) k-mers on
diluted lattices [39, 40]. These studies are in progress.
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